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Abstract

Although the asymptotic homogenization is known to explicitly predict the thermo-mechanical behaviors of an
overall structure as well as the microstructures, the current developments in engineering fields introduce some kinds
of approximation about the microstructural geometry. In order for the homogenization method for periodic media
to apply for general heterogeneous ones, the problems arising from mathematical modeling are examined in the
framework of representative volume element (RVE) analyses. Here, the notion of homogenization convergence
allows us to eliminate the geometrical periodicity requirement when the size of RVE is sufficiently large. Then the
numerical studies in this paper realize the multi-scale nature of the convergence of overall material properties as the
unit cell size is increased. In addition to such dependency of the macroscopic field variables on the selected size of
unit cells, the convergence nature of microscopic stress values is also studied quantitatively via the computational
homogenization method. Similar discussions are made for the elastoplastic mechanical responses in both macro- and
microscopic levels. In these multi-scale numerical analyses, the specific effects of the microstructural morphology are
reflected by using the digital image-based (DIB) finite element (FE) modeling technique which enables the
construction of accurate microstructural models. © 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The mechanical behaviors of heterogeneous media essentially involve the multiple scale nature. There
have been considerably many theoretical developments to obtain the reasonable estimates on the micro-
(local) and macroscopic (global) mechanical behaviors within the context of mechanics of composites.
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Notable among the recent developments is the mathematical theory of homogenization especially for
composites with periodic microstructures (see, for example, Benssousan et al., 1978; Sanchez-Palencia,
1980). The multi-scale capability of the homogenization method is recognized as a promising tool in
attacking formidable problems in mechanics for heterogeneous media and, in fact, has been successfully
applied to the various engineering problems for industrial composites with the help of Finite Element
Method (FEM) (see, e.g., Devries and Léné, 1987; Guedes and Kikuchi, 1991; Jansson, 1993; Terada
and Kikuchi, 1995; Fish et al., 1997).

The homogenization results in the mathematical theory do not impose any limitation on the
microstructural composition except for the assumption of local periodicity of the media. Nonetheless,
most of the results in engineering applications have involved several restrictions on the morphology of
microstructures because of the lack of enough information about the microstructural geometry or the
incapability of dealing with the geometrical complexity in numerical modeling. As a result, the
applications in engineering problems with numerical analyses involve the idealization of microstructural
heterogeneities and the simplification of the spatial distribution of inclusions. For instance, the
microstructure of a fiber-reinforced composite is often assumed to have a single fiber of regular shape
with surrounding matrix phase (which is sometimes called the basic structural element) and to be
arranged in a periodic manner. However, in reality, many composites have more or less randomness in
the geometrical configurations of constituents and even the periodic distribution of a single cell is
seldom observed. Inevitable therefore, there may be potential errors in evaluating the micromechanical
responses, and, as a result, in estimating the effective material properties. Such an irrelevant evaluation
may not be allowable in nonlinear problems even if the periodic distribution is approximately correct
and if the calculated homogenized quantities are feasible in practical applications. In fact, the errors will
be accumulated and critical in estimating the overall behavior when the incremental solution method is
adopted to perform fully global-local non-linear computations. Thus, the problem would be posed on
the determination of a representative volume element over which the averaging is performed, on the
selecting boundary conditions, and on the construction of numerical models of its heterogeneity under
the assumption of local periodicity.

In this context, several attempts have been made in engineering applications. In order to include the
specific effects of microstructural morphology to the homogenization analyses, Ghosh et al. (1995)
utilized the Voronoi cells to represent the arbitrary distribution of inclusions and developed the novel
numerical method, called the Voronoi Cell Finite Element (VCFEM). The results show good agreement
with conventional and analytical solutions of plane problems in both linear elasticity and small
deformation elastoplasticity. Another attempt is made by Hollister and Kikuchi (1994) to construct
realistic 3-D-FE models of bone’s microstructures. Their approaches extensively utilized the features of
the data structure of digital images; identifying each volume picture element (voxel) as a finite element.
It is shown, using the asymptotic homogenization method, that the digital image-based (DIB) modeling
technique enables the quantitative study of the macro- and micromechanical characteristics of bone’s
porous skeleton within the framework of linear elasticity. The feasibility and applicability to the general
composites have recently been studied by Terada et al. (1997), in which various usages of digital data
are presented. While successfully taking into account the microstructural geometry, these studies focus
their attention on the geometry modeling and tend to pay less attention to the classical notion of
statistical (or macroscopic) homogeneity in defining representative volume elements (RVS’s), see Hashin
(1983).

Even if arbitrary morphology in the unit cell is accurately modeled by using digital images, a selected
region might not necessarily be periodic in its geometry. Recently, by utilizing the convergence results in
the mathematical homogenization method, Sab (1992) justified the Hill’s (1963) arguments about the
equivalency between displacement and traction boundary conditions on the RVE in obtaining effective
material properties. Major consequence in his analysis was that ‘any homogenization result that holds
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for periodic media, holds also for Statistically Periodic Ergodic (SPE) and Statistically Homogeneous
Ergodic (SHE) random media’. His theoretical study encourages us to examine the dependence of the
macro- and micromechanical behaviors of general heterogeneous media on the selected sizes of RVEs in
conjunction with the computational homogenization method for general heterogeneous media.

In this paper, we extend our current developments of the computational homogenization method for
periodic media to that for general heterogencous media whose microstructures have irregular
geometrical configurations. In Section 2, we shall describe the RVE notion and the conventional
homogenization with different boundary conditions, and then the variational homogenization formulae
derived from the method of asymptotic expansions are briefly reviewed in the framework of linear
thermo-elasticity. Assuming the periodic distribution of a single-inclusion unit cell, the numerical
example shows that the periodic boundary condition gives intermediate estimates on the macroscopic
quantities compared with the displacement and the traction boundary conditions. With the help of DIB
FE modeling technique, Section 3 is devoted to the analysis of general heterogeneous media without
assuming the geometrical periodicity for microstructures. In addition to the brief review on the
mathematical theory of homogenization, it is proved that the periodic boundary condition is the best
among the class of boundary conditions of RVEs. Then, the study involves the numerical simulations of
the multi-scale convergence in comparison with classical approaches in RVE analyses. It is found that
the homogenization method for periodic media enables the multi-scale estimates on the mechanical
behaviors of general heterogeneous media without a priori assuming the geometrical periodicity. In
Section 4, the nonlinear behaviors are discussed from engineering view points by examining the trends
of convergence of micromechanical responses in the localization processes. The consequences in this
paper would be helpful in various practical problems because the theoretical and numerical results
enlarge the applicability of our current developments of the computational homogenization method.

2. The homogenization methods for periodic media

The concept of statistical homogeneity for considered media allows the introduction of a volume
element over which averaging is performed meaningfully. This elementary volume is called a
representative volume element (RVE) and, according to Hashin (1983), is assumed to be a cubic domain
sufficiently large at the microscale and sufficiently small at the macroscale. Then the field variables such
as stress and strain are also statistically homogeneous in the RVE. In the case of statistical
homogeneous fields, the moving average and the ensemble average are constants and also equal, which
is known as the ergodic hypothesis. In this section, based upon these classical notions for RVE, we
present the analyses for overall properties of heterogenecous media. We describe the boundary value
problems for RVEs so that the theoretical and technical results are briefly reviewed. After the
variational formulae for computational homogenization are presented, we show some numerical
simulations for actually periodic media in order to justify the theoretical results for RVE analyses in the
following sections.

2.1. Classical RVE approach for effective elastic properties

In order to estimate the effective elastic properties of heterogeneous media, most of the classical
methods assume the existence of a RVE. Then the RVE is subject to prescribed surface displacements
(respectively tractions) which would produce a uniform strain (resp. stress) in a homogeneous medium,
and eventually the linear relation between volume average stress and strain gives the overall elastic
moduli. The derivation of a constitutive law involving an averaging process over RVEs is sometimes
referred to as RVE analysis. Some of them are reviewed by Hashin (1983), and many micromechanics



2288 K. Terada et al. | International Journal of Solids and Structures 37 (2000) 2285-2311

results have been established in the framework of the RVE analyses (see, for example, Mura, 1982;
Christensen, 1990; Nemat-Nasar and Hori, 1995 and references therein). Below, we briefly review the
classical definition of effective elastic properties by taking after the notations by Suquet (1987, 1985) and
Maugin (1992).

In the RVE analyses, two different scales are implicitly used in the description of heterogeneous
media. One of these is a macroscale denoted by x, at which the heterogeneities are invisible. The other is
a scale for the heterogeneities and is referred to as the microscale, denoted by y. The latter defines the
size of the RVE whose domain is denoted by V. Then, for statistically homogeneous media, the
mechanical problem is posed in the following manner: let a(y) and e(y) be the stress and strain at the
microscale and denote by (6) and (e) the corresponding macroscopic quantities where the symbol ( )
indicates the volume average defined, respectively, by

1 1
Z::(o’)::m JVo'(x,y) dy and E:=(e):=m Jye(x,y) dy (1)

where | V] is the volume of the RVE. Here the strain is infinitesimal and its components are defined as

ey(V)==%<avi + a”"). @

ax_/ 8xi

Note here that we have identified the symbol ‘e(*)’ in eqn (2) with a differential operator for a vector
field ‘v* in order to distinguish the contributions from various kinds of displacement fields.

While the process that relates the X and E to the microscopic constitutive laws is called the
homogenization, the inverse process that determines a(y) and e(y) from X and E, respectively, is called
the localization. Therefore, with the data ¥ and E in the localization process, the microscopic problem
to be solved is given by

{ dive(y)=0 3)
o(y) =a(y):e(u)
along with either one of the following boundary conditions applied to the RVE boundaries:

(a)6 -n=X-n on oV

(Lu=E-y on dV 4)

where the former corresponds to the uniform traction and the latter the uniform strain. Here, ‘-’ makes
scalar products while ‘:’ is a trace operator.

Equivalently, in the variational formulation for (3), we can rephrase each condition by defining the
solution space as a subspace of Hilbert space, H'(V)*, as follows:

@)1y =7 = |w e H'(7ew)) =0}, 5)
W)V o=9 ={w' e H') W' =0 on aV}. (©6)
Here, w! is the fluctuation of the displacement field # which has been divided as follows:

u=E-y+w', wevr,. (7
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Fig. 1. Modeling of representative volume element.

When the problem is linear, the solution w' depends linearly on the prescribed strain field, E. Thus,
decomposing E into six elementary states of macroscopic strains (stretch in three directions and three
shears), one can write the fluctuation as w' = —y*Ey,, where x(y) is called the characteristic
deformation. Then the corresponding strain field is also given as e(w') = —e(x*")Ey, which is actually
the superposition of the six elementary deformations. Thus, the strain field can be written as e(u) =
E — e(y*")Ey, or, in component form,

ejj = Ey — ei (") Ean = 5§ Exa, 8)

in which the tensor of localization has been defined as s/ = I — e;(x""). Here, I§" is the fourth-order
identity tensor defined as If" = 1/2(340, + 0;x0:4), where dj; is the Kronecker delta symbol.

By solving (3) with these two different boundary conditions, the effective elasticity compliance A and
stiffness tensors @* can be respectively defined. In general A and @ are not reciprocal because they are
derived from different boundary conditions and the extremal principle in the calculus of variation leads

to the following inequality (see, Sab, 1992 for the proof):
E:A"(V,a) " :E<E:d"(V,a):E VE€cR’. 9)

That is, the averaging process with uniform strain on the boundary overestimates the stiffness while that
with uniform traction underestimates the actual one if the RVE is taken in such a manner. In this
context, Hill (1967) and Mandel (1971) estimated the error between two by the relation as

A"V, a): a1V, a) =1 + O((¢/9))’ (10)

where ¢ is the characteristic dimension of the heterogeneity and ¢ the typical size of the RVE that we
have chosen. Then it was justified by Hill (1963) that ‘the relationship between average strain and stress
is the same for both types of boundary conditions’ when ¢ is sufficiently large. It is expected that there
may be a certain value Jdp where effective material properties obtained from these two boundary
conditions are almost reciprocal, see Fig. 1(a). Note that this holds as a consequence of statistical
homogeneity of the medium.
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2.2. Periodic boundary conditions

In order to introduce a priori the statistical homogeneity to the media, the local periodicity
assumption of the microstructural geometry is often made (Fig. 1(b)). Then the volume element is
chosen so as to contain a single inclusion in a matrix phase (Fig. 1(c)) and is therefore called a unit cell
with least heterogeneity. The simplification and idealization arising from this assumption greatly reduce
both numerical modeling effort and computing time because the unit cell has been chosen as a cubic cell
which contains minimum morphological information.

For such a particular selection of RVE, the periodicity of the deformation might be an appropriate
kinematic condition imposed on the RVE boundary. The displacement field for the microscopic problem
(3) is postulated as

(cyu=E-y+ w!, wl; periodic, o - n; anti-periodic on 9V, (11)
which is equivalent to defining the solution space such that
() o= per = w'e HI(V)3|w1; periodic on 3V'}. (12)

It is known that, with the help of the method of two-scale asymptotic expansions, this boundary
condition makes the derivation of homogenization formulae systematic, see Benssousan et al. (1978),
Sanchez-Palencia (1980).

The homogenization results obtained by this periodic boundary condition were compared by Suquet
(1987) with those of the standard approaches, leading to the following relationship for the effective
material properties:

E:d" E<E:a’ :<E<E:d":E VE (13)

* “per
where agr is the effective stiffness matrix obtained by the periodic boundary condition and @ = (A#)~!.
Thus, for actual periodic media, the periodic boundary condition on the RVE of a basic structural
element gives more reasonable estimation on the effective elastic moduli than both displacement and
traction boundary conditions. This relationship is sometimes called the universal inequality for effective
moduli for elastic media. Although this is the direct result from the inequality (9), the discrepancy
between those two estimates on the effective stiffness tensors by uniform stress and strain will be
significant because the characteristic length of the heterogeneity is comparable with that of unit cell, i.e.,
o ~e. Therefore, the unit cell cannot be a representative for the standard RVE analyses using these types
of boundary conditions although it is a well-known fact that the periodic microstructures are statistically
homogeneous.

In summary, under the assumption of periodic distribution of a basic cell with least heterogeneity, the
homogenization with the periodic boundary condition can evaluate more accurate macro- and micro-
mechanical behaviors in the sense that it lies in-between @’/ and @*. Nonetheless, owing to the estimate
(10), even if the medium is periodic, the standard approaches in mechanics of materials could predict the
same overall elastic properties by taking sufficiently larger RVE size (see Fig. 1). This fact was partially
justified by the numerical analyses with simplified microstructures performed by Hollister and Kikuchi
(1992). In this paper, this matter should be further investigated by the theoretical statements and by
performing a series of computational homogenization analyses while the computations presented in this
section simulate the results only for periodic media that have a single inclusion.
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2.3. Variational formulation for the homogenization

Exactly the same formulae with those obtained by the microscopic problem (3) with the periodic
boundary condition (12), can be derived by using the method of two-scale asymptotic expansions for
piodic fields. Before carrying out the homogenization analyses, let us describe both the micro- and the
macroscopic equations for linear thermo-elasticity are presented. The variational formulation for the
homogenization and the localization formulae is more useful in the finite element analyses presented in
this paper.

The following microscopic problems are first solved for the characteristic deformations, y*", which
contribute to the fluctuation as in (8) and that for thermal expansion, ¥, in an unit cell domain V-

J e,(w):a: e},(xkh) dy = J ae,(w)dy VYw eV, (14)
14 v
and
J e(w):a:e(¥)dy= J B:e,(w)dy VYweV (15)
v v

where, w is the virtual displacement and = a : a. Here a is the coefficient of thermal expansion (CTE).
Using these solutions, the homogenized elasticity tensor and the homogenized CTE are computed by the
following formulae:

o 1

1 -1 1
Aoy = 7 Jya s dy, aé’er = (‘ﬂi;) : [m JV(B —a:e,(})) dy] and b7 = 7 JVb dy (16)

where | V| indicates the volume of the unit cell. The process up to these computations corresponds to the
homogenization. Then the following macroscopic problem of the homogenized structure is solved for
the averaged deformation, u’(x):

L ex(v) :alfer ce,(w”) dx = JQATex(v) cafl ol dx 4 Lb” -vdx + Jr t-vdlT Wwea (17)

per per
where v is an arbitrary displacement defined in the admissible space

%:[veHl(Q)3|v:0 onauQ:Fu}. (18)
Here ¢ is the applied external force on the boundary I'; and b is the body force.

In the localization process the microscopic displacement w'(x, y) denotes the deformation of the unit

cell and is given by

w'(x,y) = —xk”ex,kh(uo) + ATV (19)
which corresponds to the fluctuation in Subsection 2.1. Here the subscript x indicates that the
differentiation is carried out with respect to the macroscale x. Therefore, once the macroscopic problem

(17) is solved, the solutions, u°(x) and AT(x), are localized to give the micro-mechanical responses of the
unit cell. The microscopic stress field is defined by
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o =a: (ex(uo) + ey(wl)> —AT(B—e,(¥)) = (a:s): e (u’) — AT(B —e,(¥)) (20)

while e, (u’) + ey(wl) is the microscopic strain which is identical to the expression (8).

In the above, we have skipped several steps and omitted some explanations. For the detailed
derivation of the homogenization formulae, one can refer to the literature, e.g., Sanchez-Palencia (1980)
and Guedes and Kikuchi (1991).

2.4. Numerical example
We shall try to justify the inequality (13) by carrying out a series of numerical experiments with three

different boundary conditions on the RVE, namely the unit cell. Here we confine ourselves to actually
periodic media, that is, the heterogeneous materials with a periodic microstructure. Further we assume

£
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Fig. 2. Homogenized material properties vs volume fractions of inclusions: (a) in two-norm of homogenized elasticity matrix; (b) in
homogenized shear modulus Gj,.
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that the heterogeneity can be idealized as a basic structural element with a single inclusion. Then the
unit cell is identified with the model shown in Fig. 1(c). The material properties for each phase are given
as follows: Young’s modulus; 100 GPa for the inclusion, 10 GPa for the matrix; Poisson’s ratio 0.3 for
both.

Fig. 2 shows how the homogenized moduli change in different volume fractions of inclusion by two
measures of stiffness; one is the two-norm of the homogenized elasticity matrix and the other the
homogenized shear modulus. As can be seen from the figures, the actual periodic media prefer the
periodic boundary condition for giving the effective material properties because the homogenization
results give intermediate estimates between the ones obtained by the stress and strain boundary
conditions. Of course, the term ‘intermediate’ is ambiguous for actual effective material properties and,
in fact, there is no guarantee that it is the best among a class of possible boundary conditions.
Nonetheless, the periodic boundary condition provides the reasonable estimates on the effective moduli
in the sense that they are always bounded by the other. This is more rigorously confirmed from the
discussions in the next section.

In spite of reasonable estimates of effective elastic properties by the periodicity assumption on the
RVE geometry and the advantage in computation, many composite materials do not have such a
periodic distribution of the smallest microstructural unit (Fig. 1(c)). One must suffer from the estimation
errors due to the simplification and idealization of the RVE. Nonetheless, for a composite material
whose microstructure has arbitrary distribution of inclusions (Fig. 1(a)), it can be proved that the
asymptotic homogenization method can be applied by combining the concept of homogenization
convergence and the RVE notion. This is the main subject of the following sections and the whole

paper.

3. Homogenization fogeneral heterogeneous media
3.1. The mathematical homogenization theory

The mathematical theory of the homogenization method concerns composite media whose
microstructure occupies a fixed region with characteristic length ¢. In linear elasticity, when the medium
is subjected to a certain load and given boundary conditions, the primal interest of the theory is what
would happen as ¢ goes to zero. The theory asserts that, as ¢ goes to zero, the composite structure
behaves as it were occupied by some equivalent homogeneous medium and that the actual displacement
u® tends to the homogenized displacement field u°, which is a solution of the governing equations whose
coefficients have been homogenized. The existence and uniqueness of the solution for the
homogenization problem is owing to the notion of I'-convergence of a functional or that of G-
convergence associated with Green function (see, e.g., Zhikov et al., 1980).

In this mathematical framework, neither the microstructural configuration nor the in situ loading
condition at the boundaries for microstructures are specified. Without such information, the overall
elastic tensor, a°, of a cubic domain with characteristic length J, converges to the homogenized elasticity
tensor, a’, such that

lim @’ = a". (21)
0— +00
However, if the concrete structure of homogenized coefficients is needed for practical uses, the
homogenization method requires further information about, the kinematics, the geometry and/or the
boundary conditions for the microstructure, e.g. (local) periodicity or some statistical arguments.
In this context, most of the homogenization theories have been developed particularly for periodic



2294 K. Terada et al. | International Journal of Solids and Structures 37 (2000) 2285-2311

microstructures (see, for example, Babuska, 1976). By assuming the periodic distribution of the basic
microstructural element (unit cell), the method successfully relates micro- and macroscopic variables
and, by introducing the method of two-scale asymptotic expansion, the homogenization method
describes the asymptotic behaviors of composites with explicit structures of generalized convergence (see,
e.g., Bensousan et al., 1978); Sanchez-Palencia, 1980; Lions, 1982; Duvaut and Nuc, 1983). This version
of the homogenization, which is sometimes called the asymptotic homogenization method, allows a
systematic derivation of the micro- and macroscopic problems and, therefore, is useful in numerical
analyses in practical and engineering problems. Examples of such applications are found in, e.g., Devries
and Léné (1987), Guedes and Kikuchi (1991), Terada et al. (1998), Kyoya et al. (1999). It is worthwhile
to note that, for actual periodic media, the homogenized stiffness, affer is identical to the limit a”, in
(21).

Together with the discussion in the previous section, we conclude that if the selected size of the
microstructure is large enough so that the sufficient morphological information can be included, the
homogenized elasticity properties are computed correctly by assuming the periodicity of field variables,
but not as a geometrical restriction on the boundary. Thus, the homogenization for periodic media can
be directly applied to the statistically homogeneous media by taking a large unit cell domain so that the
homogenized coefficients would be so close as the H-limits, see Tartar (1989) or Sab (1992).

3.2. Periodic boundary condition for general heterogeneous media

The universal inequality (13) shows that the homogenecous stress and strain boundary conditions
bound the strain energy of a body subjected to admissible boundary conditions. In this subsection, it is
shown that the strain energy due to periodic boundary conditions is stationary among a certain class of
strain energies.

For simplicity, consider a cube U with the edge length 2x. Let @ and ¥ be the surface displacement
and traction when periodic boundary conditions are prescribed, and denote by E and X the resulting
average strain and stress. Due to the uniqueness of the solution, displacement boundary conditions of
u=a’ or dU or traction boundary conditions of t=7" on U are equivalent with the periodic
boundary conditions. First, consider a disturbance in displacement boundary conditions, u = @#” + du on
dU. The change in the strain energy is ¢E| + ¢*E», where E; and E, are functionals for du and defined
as

E (i) = ij 7. 5i dS (22)
U U

E,(0u) = %]LUE(&;) .o dS (23)

where 7(dit) is surface traction when the boundary conditions are u = ou. Due to the periodicity of i
the functional E vanishes if the disturbance displacement is of the following form:

M
oul(x) = Z Uy exp (im -x) (x ondU) (24)

my,my,mz=1

when u,,’s are arbitrary constants and M is an arbitrary number. This di” does not change the average
strain. It follows from E; > 0 that u =@’ or periodic boundary conditions yield a stationary average
strain energy among the class of displacement boundary conditions.

A disturbance in traction boundary conditions can be dealt with in essentially the same manner. For
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traction boundary conditions of ¢ = i’ + &5t on U, the change in the strain energy is given as
¢E| + 2 E5 where

BGa) =+ j 5F i dS (25)
Ul

o 1 o

BN = 5 LU(3t a(57) ds (26)

with #(57) being the surface displacement when boundary conditions are £ = Ot (a rigid body motion is
excluded). The periodicity of #” — x - ¢ makes Ecl = 0 for a disturbance of the following form:

M
ot (x) = n(x)- Z onexp(m-x)| (xondl) 27)

my,my,mz3=1

with a9 = 0. Since E; is positive, the periodic boundary conditions yield the minimum strain energy. In
other words, the periodic boundary conditions of t=x-X’' + ot”, with x being chosen such that the
average strain becomes E.

It is easily seen that for any i’ (or of"), displacement boundary conditions of u =x - E — 5"’ (or
traction boundary conditions of t =x-X + 5fP) yield the minimum (or maximum) strain energy, among
a class of traction (or displacement) boundary conditions. However, only the periodic boundary
conditions yield an average strain energy that is the minimum among the class of displacement boundary
conditions and the maximum among the traction boundary conditions yield a stationary strain energy.
Therefore, it can be seen that the effective elasticity tensor that is computed by using the periodic
boundary conditions takes on a kind of mean value among both boundary conditions of {u = u#” + i’}
and {t =" + st").

The mathematical and the theoretical results described in the above are quite important in applying
the computational homogenization method to practical problems. That is, in most cases, it is not easy to
assure the ‘sufficiently large size’ of RVEs prior to the analyses. However, even if the size of unit cells
depends on the capacity of our computer resources, the homogenization with periodic boundary
conditions provides a reasonable approximation for the macroscopic constitutive relationship than other
approaches with different boundary conditions. In other words, engineers can use the computational
homogenization method with periodic boundary conditions by taking the RVE size as large as possible
and need not pay much attention to the geometrical periodicity of the RVEs’ boundaries.

4. The homogenization convergence in linear elasticity
4.1. Numerical modeling in conjunction with homogenization analyses

In this section, we provide the simulation of multi-scale convergence in the homogenization method
based on the theoretical results presented in the previous sections. In order to perform a series of
computations for this purpose, it is necessary to appropriately include the hetereogeneities of the media
into the numerical analyses of homogenization. However, the computations for such convergence are
not easy in general because complex geometrical modeling must be performed.

In structural analyses by the Finite Element Method (FEM), it is known that a more accurate
geometry model gives better results. This is also true for microstructural analyses; the actual geometry
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Fig. 3. Captured image (micrograph) of MMC (NiAl,—Cr).

can only reproduce the actual microscopic variable fields. For instance, conventional FE geometric
modeling might not give an appropriate microstructural model of naturally existing microstructures for
evaluating the mechanical behaviors of an overall structure. Even for industrial composites, the
idealization of the microstructural geometry seems to be irrelevant for evaluating the microscopic stress
field as well as the overall mechanical behaviors. Fig. 3 shows the micrograph of a metal matrix
composite whose matrix and fibers are NiAl, and Cr, respectively. It is easily imagined from the figure
that the idealized geometry, e.g., the basic cell which contains a single fiber in a cubic domain, will not
provide accurate stress distribution in the domain. It is, therefore, necessary to develop an accurate
geometric modeling technique for the homogenization analyses.

In this paper, we are examining the applicability of the computational homogenization for periodic
media to general heterogeneous media. In order to include the specific effects of microstructural
morphology to the homogenization analyses, the digital image-based (DIB) modeling technique is
extensively utilized because the applicability has already been justified in Hollister and Kikuchi (1994)
and Terada et al. (1997). Although this numerical modeling technique plays a crucial role in this study,
we provide only the procedure in the Appendix.

4.2. Simulation of the convergence of macroscopic variables

This subsection is devoted to examine the effects of the selected sizes of RVE’s on the macroscopic
mechanical behaviors of general heterogeneous media by carrying out a series of homogenization
analyses. Keeping in mind the MMC of Fig. 3, we first made an image of a microstructure as shown in
Fig. 4, which has a resolution of 1024 x 1024 pixels in a plane. As for the prepared microstructure, the
black part is assumed to be inclusions or fibers, which have a volume fraction of V;=49.0%, and the
gray part corresponds to the matrix. Young’s moduli of matrix and inclusion are E;= 100 GPa and



K. Terada et al. | International Journal of Solids and Structures 37 (2000) 2285-2311 2297

Fig. 4. Image of microstructure with selection of unit cell region: (a) 1024 x 1024; (b) 896 x 896; (c) 768 x 768; (d) 640 x 640; (e)
512 x 512; (f) 384 x 384; (g) 256 x 256; (h) 128 x 128 (pixels). (a) Digitized model (32 x 32 pixels).

E, =10 GPa, respectively, while Poisson’s ratio is taken as v,=0.3 for both constituents. The
coefficient of thermal expansion (CTE) of inclusion is given as ay= 1.6 x 107°/°C and that of matrix as
oy = 1.0 x 107¢/°C.

The overall elastic properties, i.e., the homogenized elasticity constants and the homogenized CTE are
computed by solving the microscopic problems (14) and (15) and then computing Eqs. (16);,. Before
studying the convergence with respect to the size of RVEs, we shall examine the feasibility of the
subsequent numerical analyses. Using the material constants as specified in the above and fixing the
volume fraction to V;=49.0%, we compare the homogenized Young’s modulus for the models
presented in Fig. 5, which are constructed so as to be orthotropic. The digitized model has 32 x 32
pixels in the y;y,-plane so that the cell contains only a single inclusion. The results are shown in Table 1
along with those of Halpin—Tsai’s analytical (semi-empirical) equations (see Halpin, 1992). Here, we
have assumed that a fiber is embedded in a matrix so that the following three-dimensional effective
moduli would be obtained: Young’s moduli in the longitudinal and the transverse directions, E; and Efr,
respectively, and the shear modulus in the y;y,-plane. As can be seen from the table, the difference of
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Table 1
Macro- and microscopic variables for different types of models

E Er Gt Maximum Average Average
(GPa) (GPa) (GPa) stress stress in stress in
(MPa)* matrix inclusion
(MPa) (MPa)
Digitized model® 43.623 21.848 7.220 87.14 28.512 47.02
Idealized model 43.623 21.526 7.399 67.03 22.32 39.34
Analytical solution® 53.200 19.391 7.458 - - -

# Volume fraction of inclusion is 0.49.

® Stress values are from Case 1 (0.1% macroscopic normal strain). B

CE = EVy + En(1=Vi)hive = wVy + va(l=Vy) (P/P)=[(1+EnVy)/(A = nV)lin=(Pr/Pw — D/(Pf/Pw + OLP =
Er,Gyrr, Gz, or Grz; £ = 0.3.

homogenized values computed from these two models are almost the same, say within 5%. Therefore,
the error coming from discretization might be negligible in the following computations.

Next, as illustrated in Fig. 4, eight regions are selected as RVE domains, that is, the unit cells are
modeled by the DIB modeling technique by changing the total number of pixels. The largest unit cell
model has 1024 x 1024 pixels (finite elements) while the smallest model has 128 x 128. When changing
RVE sizes in this simulation, the volume fractions must be fixed to Vy=49.0% and the order of FE
approximation should be the same for all the unit cell models. For this particular purpose, the DIB
modeling technique is the most appropriate for constructing the FE unit cell model because it enables
the systematic modeling for heterogeneities. In fact, the computer program developed in Terada et al.
(1997) make it easy to construct the model of the same volume fraction for the RVE in Fig. 4.

The computational homogenization procedure gives the effective elasticity matrix and the
homogenized CTE are, respectively, denoted by

H H H
ann 422 92

— H H
a = Ay A1 |» (28)

H
api

Fig. 5. DIB model and idealized finite element model.
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the former of which can be recognized as either @, @ or a{;’er. Fig. 6 shows the trend of convergence of
two-norm of eqn (28). Here, the characteristic length in the figure indicates the length scale normalized
by that of the model of 32 x 32 pixels (which was used in the above). It can be seen from the figure that
the two-norms of homogenized elasticity matrices obtained by using periodic boundary conditions are
bounded by those by the other two boundary conditions. This result agrees with those by using actually
periodic microstructures in Section 2. Furthermore, all the values become close to each other as the
RVE size increases irrespective of boundary conditions. In other words, there seems a limit that
corresponds to the limit in eqn (21) and therefore we could simulate the converging trend of the effective
elasticity properties.

Since the medium appears to be statistically homogeneous and possibly be isotropic, let us check
whether or not the medium has such a feature from the computed homogenized material constants. We
first define the parameters such that

H H
a _ o
5:‘-% and ::1—%‘ (30)
530)) 5%}

which would be reasonable measures. For an isotropic nature of the heterogeneous media, the following
measures for elasticity matrix and CTE are introduced:

n= max {|laf ], 1a%,1} and © = [«f]. (31)

Figs. 7 and 8 show the convergence trends associated with these parameters by taking the characteristic
length normalized by the model of 128 x 128 pixels. As can be seen from these figures, the considered
medium shows orthotropy or isotropy when the RVE sizes are taken larger and larger. It should also be
noted that since the material configuration is incompatible with the periodicity at the boundary of the
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Fig. 6. Convergence associated with orthotropy and isotropy for homogenized elasticity matrix.
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RVE, there is some noises in computations. However, the influence might be limited to a thin layer near
RVE’s boundary and tends to disappear as the RVE size increases. This fact also proves that the
statistical homogeneity along with the H-convergence could be achieved by the sufficiently large RVE as
if the medium had geometrical periodicity.

In summary, the homogenization convergence of the macroscopic variables described in the above
was justified by the numerical analyses. However, in this linear elasticity framework, the differences
between the macroscopic values are not so large that the choice of the RVE size does not seem to cause
severe error in practical applications. In other words, the periodic boundary conditions with relatively
small RVE size provides reasonable estimates on the macroscopic variables for this kind of inclusion-
matrix packing even if the medium does not have actual geometrical periodicity.

4.3. Simulation of the convergence of microscopic variables

On the other hand, the microscopic variables in the localization process, e.g., the microscopic stress
fields eqn (20), can be evaluated for all the models. Although the localization has to be performed based
on the results of macroscopic structural analyses, i.e., the solution of eqn (17), the same temperature
change and strain values are applied in order to study the effects of geometric configuration and RVE
sizes. In the present localization analyses, the following cases are considered:

Casel: E = 0.001 0 , AT=0°C

0 0

0 0.001 R
Case2: E = |:0'001 0 ],AT:OC

Case 3. E=0, AT=-100°C

where the notations are consistent with those in Section 2. In order to make the interpretation of the
micromechanical behaviors easy, von-Mises stress is mainly used as an indicator for this study. For each
case, the maximum and the inclusion-averaged values of von-Mises stress is computed and these values
are compared with both digitized and idealized models in Table 1. It is found from the table, the stress
values computed by using the former seem to involve fairly large approximation errors. However, it is
possible to compare the microscopic stresses as long as the order of approximation is kept in the DIB
modeling. Thus, the computations must still be valid in the following discussions.

Fig. 9 provides the variations of the microscopic stresses as the RVE size becomes large, i.e., e— 0.
Here, the characteristic length was taken with respect to the model of 32 x 32 pixels. As can be seen
from the table and figure, the microscopic stress values also converge to certain values in the same
manner as the homogenized properties of all cases. This fact, together with the convergence the
macroscopic values, confirms that the nature of multi-scale convergence is observed for this
heterogeneous medium.

However, the variation of the microscopic stress is much larger than that of the homogenized
properties. Also, the variation of the averaged stresses in inclusions are slightly smaller than that of the
maximum stresses. We recall that the homogenized properties are volume average of the microscopically
distributed characteristic deformation. Although the converging variations of macro and microscopic
variables are essentially equivalent, the highly oscillating stress values exist in a microscale and might be
cancelled out during the averaging process for homogenization. This is probably the reason why the
microscopic stress gives much larger variation in the convergence process than the macroscopic one.

The final remark is due to the study on the contour plots of microscopic stress distribution. Instead of
comparing individual values of stress, let us treat them as digital images; each element value is converted
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Fig. 9. Convergence associated with orthotropy and isotropy for homogenized CTE. (a) Variation of maximum microscopic stress
within a unit cell. (b) Variation of difference between von-Mises stresses averaged over fibers and matrix.

to the 8-bit pixel value in the image processing software. Using this software capability, the distribution
of the pixel value (0-255) in the contour enables the quantitative evaluation of the microscopic stress
fields.

Fig. 10 shows stress distribution computed from the unit cell models of 32 x 32, 128 x 128 and
640 x 640 pixels for Case 1. Note that though the models of 128 x 128, 384 x 384 and 640 x 640 pixels
show differences in Fig. 9, but provide similar irregularity. More specifically, the distributions (b)—(d)
involve some continuous curve where the stress values are very high while (a) does not; the former three
figures provide irregular distributions of microscopic stress. To this end, it is important to note that
these irregular distributions of stress distinguish the idealized periodic distribution of microstructure and
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Fig. 10. Microscopic von-Mises stress distribution: (a) 32 x 32 (4-times enlarged); (b) 128 x 128; (c) 384 x 384; (d) 640 x 640
pixels.

actual microstructures. This is probably the reason why the digitized model in Fig. 5 has discrepancy in
evaluating microscopic fields in Fig. 9.

The convergence results in the above are illustrative and comprehensive. However, as pointed out
above, the FE approximation for the heterogeneity is not appropriate in this analysis since a single
inclusion in each model does not have enough number of elements. In other words, if the microstructure
that contains a single inclusion were periodically distributed like (3) of Fig. 1, the error due to the
irrelevant meshing would be large. Nonetheless, the multi-scale convergent trends in Figs. 5 and 9 are
still valid because the same order of approximation errors is involved in the results by the digitized
models. We recall that the unit cell models were derived from the same captured image and therefore
the resolution of their heterogeneities is the same order. Since the DIB modeling technique also can be a
source of errors, sufficiently high resolution must be kept when the image is captured.
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In conclusion, while the converging trends in both macro and microscopic variable are simulated as the
size of RVE, namely unit cell, becomes large, the error due to the choice of RVE regions is much more severe
in microscopic variables than in macroscopic ones. The error appears to be related to simplification and
idealization of the geometric configuration of the unit cell. Since accurate evaluation of the microscopic
stress is essential especially in non-linear problems, the RVE size must be taken large as much as possible
when the macroscopically homogeneous nature is expected in the computational homogenization analyses.

5. Simulation of nonlinear homogenization analyses
5.1. Nonlinear mechanical behaviors of heterogeneous media

In linear elasticity framework, most of the theoretical developments for finding effective material
properties do not pay much attention to the accurate evaluation of the microscopic variables. Since it is
satisfactory that the overall mechanical behavior is appropriately evaluated, some kinds of
approximation are introduced in the micromechanical estimation; the introduction of the phase averaged
quantities or the simplification and idealization of the microstructural geometries. For instance, in the
self-consistent approach by Budiansky (1965) or Hill (1965), the inclusions are embedded in a medium
with the effective material properties and the Mori and Tanaka (1973) method is based on the
assumption that the local fields in each inclusion can be replaced by the fields existing when the
inclusion is located in a matrix phase which is subjected to the average stress or strain at infinity.

Although there must be inevitable errors in evaluating the microscopic mechanical behavior in such
theoretical developments, the overall material properties do not necessarily suffer from the errors. Thus, the
averaging technique not only makes the macroscopic analysis tractable but also prevents the errors in the
microscopic variables from appearing in macroscopic behaviors. In fact, as studied in Section 4, the effect of
RVE size on the homogenized material properties is small compared with the one for the microscopic
variables.

However, the arguments for linear elasticity problems are not true for nonlinear problems. In the
framework of an RVE analysis, the macroscopic mechanical responses are obtained as averaged field
quantities over the RVE’s and then localized to the microscopic mechanical behaviors so that the
microscopic field variables are reproduced within the RVE’s. Recall that, in the spirit of computational
mechanics, most solution methods in numerical analyses always take the incremental (or rate) form of
the variables in nonlinear problems. Therefore, the homogenization and localization processes should
keep accuracy and consistency in updating each information to the next.

In this context, both mathematical and geometric modeling strategies in the microscopic problem play
critical roles in nonlinear problems, such as elastoplasticity. Indeed, in the nonlinear solution method,
that is, the incremental scheme in the FEM, the microscopic stress is considered as a residual (or initial)
stress in the current increment. Particularly in plasticity problems, the microscopic stress at each point in
the RVE domain is used to judge the yielding of the constituents. Therefore, it is necessary to accurately
evaluate the whole set of microscopic (internal) variables in the RVE.

5.2. Computational homogenization analysis for elastoplasticity

The homogenization and localization for elastoplastic composite materials are discussed in terms of
the notion of the self-equilibrated residual stress by Suquet (1987). According to Suquet, the residual
stress is self-equilibrated i.e., (6,) = 0 for every RVE and, therefore, the macroscopic plastic work-rate,
>:E” is not necessarily equal to the average of the microscopic one, i.e.,

Z:Ep:(a:é”)+(a,,:a_l:c'r,). (32)



K. Terada et al. | International Journal of Solids and Structures 37 (2000) 2285-2311 2305

This implies that even if we observe the macroscopic plastic strain E?, it is impossible to relate it to the
microscopic one, e”, only from macroscopic approaches unless the residual elastic stress distribution
within the microstructure is obtained. Thus, the direct extensions or generalizations of the linear
elasticity formulations must be carefully considered.

In theoretical mechanics, the mathematical modeling of linear constitutive relations is often extended
to nonlinear problems. If the approximation by such extensions is a source of errors in evaluating the
microscopic variables, they are accumulated during the incremental loading. While the nonlinear
versions of the self-consistent method or Mori—-Tanaka method hardly reproduce the actual microscopic
fields, the averaging over subcells, in the method of cells by Aboudi (1992), may fail to evaluate the
accurate microscopic stress. In this sense, the constitutive modeling in the asymptotic homogenization is
more reasonable since the accurate evaluation of microscopic variables is possible.

In the asymptotic homogenization method, the microscopic stress is affected by the geometrical
configuration of the RVE. Therefore, the method is not free from error due to the microstructural
geometry. The influence of the shapes of inclusions on the nonlinear mechanical behaviors was
investigated by Guedes (1989) and Jannson (1992). They developed the computational homogenization
method for two-dimensional elasplasticity and reported that the nonlinear response due to the
incompressible plasticity reveals completely different trends in the macroscopic behavior after the
yielding at each point in the unit cell. Such computational trends for elastoplastic composites have
recently been examined in practical viewpoints by Terada and Kikuchi (1995) and Fish et al. (1997).

The morphological effects are also investigated by Ghosh and Moorthy (1995) for elastoplasticity
problems by utilizing the VCFEM. However, the effects of the RVE size or the microstructural
geometry on the microscopic plasticity response have not been considered. As examined in Section 4, the
inappropriate RVE size for a particular material causes a more severe error in evaluating the
microscopic stress in the localization process than that for macroscopic variables. In order to obtain the
accuracy in the evaluation of the macroscopic deformation, it is necessary to take the large RVE size as
much as possible so that the microscopic stress is accurately evaluated and the errors would be
minimized.

In this section, we shall discuss the importance of the geometric modeling of the RVE in the
nonlinear homogenization analysis. While the macro- and microscopic variables are successfully
evaluated in the incremental solution method, the nature of the multi-scale mechanical behaviors
together with the RVE geometric modeling is examined.

5.3. Convergence trend in a nonlinear problem

Based upon the formulation of the asymptotic homogenization for elastoplasticity, the numerical
simulation is performed. The computational procedure follows the one found in Terada and Kikuchi
(1995), but the algorithm examined in Terada et al. (1997) is also utilized for computational efficiency in
the following numerical analyses.

The composite materials used here are the same MMC presented in Fig. 3, in which the fiber volume
fraction is Vy=30%. We here use actual material constants of NiAl, and Cr such that Young’s
modulus; Ey = 255 GPa, Poisson’s ratio; vy = 0.3 for Cr fibers and E,, = 177 GPa, v,, = 0.3 for NiAl,
matrix. The yield stresses are given as 150 MPa for Cr-fiber and 200 MPa for NiAl, matrix, respectively,
and perfect plasticity is assumed. In order to examine the specific effect of RVE modeling, five unit cell
models are used in this simulation; one is the 32 x 32 pixel model that has a single fiber of regular shape
like Fig. 5(a) and the other four are made by selecting the following sizes of RVE’s in the y;y;-plane:
128 x 128, 256 x 256, 512 x 512 and 640 x 640 pixels. The global structure is subjected to the uniform
tensile force in the transverse direction with respect to the fiber alignment, which allows a single
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Fig. 11. Onset of plastic yielding for different unit cell sizes.

microscopic analysis in each increment. Although the analysis type presented here is simple, the
qualitative discussion is possible as for the elastic—plastic behavior of heterogeneous media.

The occurrence of plastic deformation with respect to the macroscopic von-Mises stress is shown in
Fig. 11. Here the equivalent plastic strain is the average within the unit cell, i.e., (¢”), which should not
be confused with the macroscopically applied deformation, E”. It can be seen from the figure, the plastic
strains occur at the different macroscopic stresses. More precisely, the plastic yielding of the smaller unit
cell model occurs at larger macroscopic stress value than that of larger models. This fact can be clearly
observed if the macroscopic von-Mises stresses at which the plastic yielding begins are compared. In this
connection, we present Fig. 12 where the characteristic length of RVE is relative to the smallest one. In
the figure, as the size of the unit cell increases, the macroscopic stress at the onset of plastic yielding is
reduced and appears to converge to a certain value. It is also found from Fig. 11 that the evolution of
each plastic deformation also reveals a different trend from others. That is, the microscopic plastic strain
of larger RVE reveals a higher accumulation rate than that of a smaller model. It is, therefore, expected
that the models of larger RVE sizes tend to reveal larger macroscopic deformation for the same
macroscopic external force even if the onset of plastic yielding is delayed.
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Fig. 12. RVE size vs macroscopic stress at which plastic yielding occurs.
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Table 2
Average and maximum plastic strain within unit cells of different sizes at 0.2%-global elongation

Characteristic length® 4 8 12 16 20

Average equivalent plastic strain within unit cells 1.290 1.322 1.341 1.352 1.359
(x 107

Maximum equivalent plastic strain within unit cells 2.501 2.870 3.669 3.830 3911
(x 107%

# Length unit normalized by the model of 32 x 32 pixels.

In order to see the specific effect of the unit cell size on the microscopic deformation, let us compare
the volume average and the maximum values of the microscopic strain for the digitized models by fixing
the macroscopic strain by 0.2%. The results are presented in Table 2. It can be found from the table
that the accumulated microscopic plastic strain within the unit cell increases as the RVE size becomes
large. That is, the microscopic deformations are affected by the RVE size while the averaged
deformations do not reveal much dependence. This is probably due to the fact that, according to eqn
(32), the increase of the microscopic plastic strain with fixed macroscopic deformation implies the
decrease of the residual stress within the unit cell. Of course, the convergence of these values can clearly
be observed from Fig. 13.

As a final remark, given the size of RVE’s, the multi-scale nature of the asymptotic homogenization
method has enabled the accurate evaluation of both the micro- and the macroscopic variables. However,
our intention is not to show the realistic analysis results but to show the importance of the geometric
modeling of the RVE, especially the size effects. In fact, it is obvious from the two reasons that all of
the results in this simulation are far from reality. One reason is that since the RVE size is not large
enough, the asymptotic homogenization results cannot reach the H-limit. From the results for linear
elasticity in Section 4, a large number of pixels in the y;y,-plane are required to satisfy the statistical
homogeneity of the medium. Since the errors in the evaluation of the microscopic stress are very large,
the homogenization method might fail to judge the yielding of constituents. Therefore, the overall
deformation that is obtained by the averaging of microscopic variables cannot be the actual one. The
other reason is that the FE approximation error is far from the practical tolerance since the number of
finite elements that are used to form a single fiber is too small. It should be noted that the constitutive
modeling of the asymptotic homogenization method provides the accurate evaluation of the nonlinear
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Fig. 13. Average and maximum plastic strain within unit cells of different sizes at 0.2%-global elongation (the differences indicate
the deviation from the results of a 640 x 640-pixel model).
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global-local deformations of a heterogeneous material only when the morphology of the microstructure
is appropriately modeled.

In this section, the simulation of the nonlinear homogenization has been carried out in order to
examine the effects of the RVE size on the micro- and the macromechanical behaviors of MMC with
general heterogeneity. The dependence of microscopic deformation on both the selected region of unit
cells and the microstructural morphology has been illustrated clearly with the help of the DIB modeling
technique though the simulation is simple. The consequence obtained here will be significant in a fully
3-D situation because the micromechanical response at each point in the overall structure is dependent
of the macroscopic deformation. In conclusion, as pointed out in Section 4, the RVE size must be taken
as large as possible for accurate evaluation of nonlinear mechanical behaviors of general heterogencous
media.

6. Conclusions

In this paper, the modeling issues in the computational homogenization method were investigated in
conjunction with RVE analyses of general heterogeneous media. In order for both the homogenized
material properties and microscopic variables to reflect the actual microstructural geometry, the DIB
modeling technique is extensively utilized to construct the numerical models of unit cells. After
reviewing some theoretical results on RVE analyses, we simulated for an actual periodic medium
numerically. For general heterogeneous media that reveal irregular material distribution in a microscale,
it is justified theoretically that the periodic boundary condition provides the most reasonable estimates
among the class of possible boundary conditions for statistical homogeneous media. Numerical
simulation for those arguments also justified that the asymptotic homogenization can be applied to the
analysis of general heterogeneous media by taking the unit cell size as large as possible. Moreover, it
was concluded that we need not strictly require the periodicity of RVE geometry in evaluating the
effective properties. This provides us with a great advantage of the computational homogenization with
periodic boundary conditions over other approaches, especially in practical situations, since the results
guarantee that we can utilize the computational strategies like DIB-FE modeling based on actually
captured images of microstructures.

Using the asymptotic homogenization method for linear thermo-elasticity, the multi-scale convergence
with respect to the RVE size was simulated and justified. Although the converging trend of the
homogenized material properties is induced from the microscopic fields such as stress/strain, their
convergence is slower than that of the homogenized values. It was also pointed out that the effects of
the microstructural morphology especially on the microscopic stress would cause errors in evaluating the
nonlinear behaviors because of the incremental schemes of the nonlinear homogenization solution
method. This was demonstrated by the simulation of the elastoplastic homogenization analyses by
utilizing the series of digitized meshes. Thus, it is concluded that the RVE size must be as large as
possible in practical applications and that the DIB modeling is promising. Although the numerical
results may be far from reality, the evolution of the computer resource capability enables the practical
applications of large-scale computations involving homogenization analyses.

The FE-based asymptotic homogenization method provides reliable estimates on the micro- and
macroscopic mechanical behaviors for heterogeneous media. When the nonlinear mechanical behaviors
are concerned, much more attention must be paid to such a multi-scale (macro-macroscopic) nature of
the mechanical responses: the mechanical behaviors for non-linear range are more sensitive to the size of
RVE’s than those of linear case. In conclusion, the more accurate geometric modeling of the large RVE
region enables the understanding of the actual phenomena in the microscopic region as well as overall
mechanical behaviors.
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Appendix: Digital image-based modeling

The digital image-based (DIB) modeling technique for the FEM, which was originally developed by
Hollister and Kikuchi (1994) for a study of bone microstructures, is utilized for evaluating both macro-
and micromechanical response of general composite materials that is given by 2-D images, see Terada et
al. (1997). The following paragraph presents the procedure of the DIB FE modeling technique for the
homogenization method.

[STEP 1] Capture and sampling

4 )

CT scanner

scanner

- J

[STEP 4]

[STEP 2] Stacking and FEA

. Extracting and thresholding

4 2

- — J[STEP3]

Exporting and modification

Fig. A. Procedure of DIB modeling.
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The whole procedure can be divided into the following major four parts (see Fig. A):

(1) Capture and sampling: prior to digitalization, an image must be captured by an optical sensor which
is chosen dependent on the desired formation modality. This process is usually assumed to be done.

(2) Selecting and thresholding: which are probably the most important operations. This process
determines the unit cell size, its FE model size and the microstructural configurations. By giving the
thresholding pixel value, the actual morphology such as inclusion shape, volume fractions, etc., is
determined.

(3) Exporting (and adjusting, if necessary): the binary data stored in the computer are exported into an
ASCII file and transferred to a UNIX platform so that our computer program can read and
recognize the data. This set of data is actually the prototype of our FE model, which is either 2- or
3-D. Depending on our needs, the microstructural configuration is adjusted, e.g., the volume
fraction is modified by changing the number of pixels.

(4) Stacking: prior to or during the FEA, the process is made using the exported data to construct the
3-D structure.

While the first three correspond to the pre-processing of FEA, the last process includes both the main
part and post-processing of the FEA of the homogenization method. In order to construct a 3-D FE
model in the DIB modeling, 2-D digital images have to be combined. The fourth process, namely the
stacking, corresponds to such data operation. In 3-D FE modeling, each pixel in a 2-D image is
recognized as a voxel which is identified as a finite element in FEA. For example, one can utilize a CT
scanner, which can capture the inside of materials with an X-ray, and stack those into the 3-D FE unit
cell model. However, microstructures of a general composite material are too small to utilize a CT
scanner that has limited resolution and are usually available only on 2-D images such as micrographs.
More details of the DIB modeling procedure, related image processing and applications to the
homogenization analyses are found in Terada et al. (1997)

This method involves image processing which fully utilizes both hardware and software capability
available. The FE model obtained in this process is the direct representation of the scanned image using,
for example, two dimensionally presented micrographs of real composite materials along with image-
processing software. Thus, the homogenization analyses can reflect the effects of the original geometrical
configuration.
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